tangent adj. 1.接觸的。 2.【數(shù)學(xué)】切線(xiàn)的,相切的;正切的。 3.離題的。 n. 【數(shù)學(xué)】切線(xiàn);切面;正切(線(xiàn));正切尺,瞄準(zhǔn)表尺;〔美口〕(鐵路的)直線(xiàn)區(qū)間。 tangent elevation 瞄準(zhǔn)角。 a tangent scale [sight] 正切尺,瞄準(zhǔn)表尺。 fly [go] off at [in, on, upon] a tangent (思想)忽然轉(zhuǎn)變;突然越出本題;突然改變?cè)掝}[做法]。 fly off at a tangent into outside matters 突然離開(kāi)本題說(shuō)些不相干的題外話(huà)。
modulus n. (pl. -li ) 【數(shù)、物】模數(shù),模量;系數(shù)。 a modulus of elasticity 彈性模量。
Segmented tangent modulus of nonlinear soil model 土體非線(xiàn)性模型的分段切線(xiàn)模量研究
Test method for young ' s modulus , tangent modulus , and chord modulus 楊氏模量正切模量和翼弦模量測(cè)試方法
Standard test method for young ' s modulus , tangent modulus , and chord modulus 楊氏彈性模量正切模量和弦切模量的標(biāo)準(zhǔn)試驗(yàn)方法
Metallic materials - determination of young ' s modulus , chord modulus , tangent modulus and poisson ' s ratio statical method 金屬楊氏模量弦線(xiàn)模量切線(xiàn)模量和泊松比試驗(yàn)方法
By using strain energy theory , tangent modulus theory is farther discussed and applied , and the combined theory of strength and stability is improved 利用應(yīng)變能定理的概念對(duì)切線(xiàn)模量理論進(jìn)行了新的論證和應(yīng)用,進(jìn)一步完善了強(qiáng)度穩(wěn)定綜合理論。
The basic frame of the theory of tangent modulus in fracture mechanics is builded , and the new method of tangent modulus factor to calculate nonlinear critical fracture stress is presented 本文論述了斷裂力學(xué)中的切線(xiàn)模量理論的基本框架,提出了求解非線(xiàn)性斷裂臨界應(yīng)力的新方法? ?切線(xiàn)模量因子算法,并對(duì)該方法同現(xiàn)有的cod法作了理論上和計(jì)算上的比較。
In this dissertation , the fact that the concepts of tangent modulus factor ( _ ( 1 ) , ) , proportional limit law ( pll ) and strength utilization ratio function ( surf ) in the combined theory of strength and stability ( ctss ) are the extension of concerned concepts in elastic mechanics is illustrated 本文說(shuō)明了強(qiáng)度穩(wěn)定綜合理論中的切線(xiàn)模量因子、比例極限定律和強(qiáng)度利用率函數(shù)等概念是彈性力學(xué)有關(guān)概念的延伸,既可以用于強(qiáng)度理論,也可以用于穩(wěn)定理論。
The existed material fatigue performance test curves are dealt with and analyzed , and the non - dimensional stress - strain curve , tangent modulus factor curve and fatigue life curve are drawn based on the experiment data , and these three non - dimensional parameter curves are used to find the inherent rules that the test curves can be replaced each other to some extent . it can be concluded that if the common character and system error of these materials are found , the test curve of a certain material can be used for reference by another material . this is a simple approach about fatigue life estimate and is engineering practical 對(duì)已有的材料力學(xué)疲勞性能試驗(yàn)曲線(xiàn)進(jìn)行分析整理,利用試驗(yàn)數(shù)據(jù)繪制了相對(duì)應(yīng)力應(yīng)變曲線(xiàn)、切線(xiàn)模量因子曲線(xiàn)和疲勞壽命曲線(xiàn),利用這三種無(wú)量綱參數(shù)曲線(xiàn)發(fā)現(xiàn)了其中存在的規(guī)律性,即在某種程度上實(shí)驗(yàn)曲線(xiàn)可以互相取代,并用試驗(yàn)數(shù)據(jù)對(duì)此進(jìn)行了討論,并由此推斷,如果找出材料彼此的共性或彼此之間的系統(tǒng)誤差就可以將一種材料的試驗(yàn)曲線(xiàn)供其它材料參考使用,這是一種估算材料的疲勞壽命的簡(jiǎn)便方法,對(duì)工程而言具有實(shí)用性。
Theory analysis in this paper pointed out that the flexural - torsional buckling is the usual form of t - section steel . so the slenderness ratio of flexural - torsional buckling should be used when people give out the b / t ratio by the " equal stability " conception . initial stress , defects and tangent modulus are include in the deduce of the paper to get a rational b / t ratio 通過(guò)理論分析指出軸心受力剖分t型鋼整體失穩(wěn)以彎扭屈曲為主,所以在運(yùn)用“等穩(wěn)定”方法確定腹板寬厚比限值時(shí)應(yīng)與桿件的扭轉(zhuǎn)長(zhǎng)細(xì)比“掛鉤” ,并以此為出發(fā)點(diǎn)考慮殘余應(yīng)力、初始缺陷,應(yīng)用切線(xiàn)模量推導(dǎo)出了較為合理的腹板寬厚比限值公式。
As for the limit bearing capacity formula of the concrete filled steel tube long column subjected to axial compress , we lead to the tangent modulus and the conception of metal material . the high strength core concrete is divided into two kinds of situations : single axial loading conditions and triaxial loading conditions 在推導(dǎo)鋼管混凝土軸心受壓長(zhǎng)柱臨界承載力公式時(shí),論文利用材料的切線(xiàn)模量,分別推導(dǎo)了鋼材和混凝土的切線(xiàn)模量公式。對(duì)于混凝土的切線(xiàn)模量,本文分成單向受壓和三向受壓兩種情況考慮,并分別得出切線(xiàn)模量公式。
In solid mechanics, the tangent modulus is the slope of the compression stress-strain curve at any specified stress or strain. Below the proportional limit the tangent modulus is equivalent to Young's modulus.